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Abstract

An important issue in developing a Model-Based Vi-
sion approach 1s the specification of features that are -
(a) invariant to viewing and scene conditions, and also
- (b) specific, i.e., the feature must have different val-
ues for different classes of objects. We formulate a new
approach for establishing invariant features. Our ap-
proach is unique in the field since it considers not just
surface reflection and surface geometry in the spec-
ification of invariant features, but it also takes into
account internal object composition and state which
affect images sensed in the non-visible spectrum. A
new type of invariance called Thermophysical Invari-
ance is defined. Features are defined such that they are
functions of only the thermophysical properties of the
imaged objects. The approach is based on a physics-
based model that is derived from the principle of the
conservation of energy applied at the surface of the
imaged object.

1. Introduction

Object recognition requires robust and stable features
that are separable in feature space. An important
characteristic of these features is that they be invariant
to scene conditions, such as illumination, and changes
in viewpoint/object pose. The formulation of invari-
ant features, and the quantitative analysis of feature
variance is currently being addressed by a number of
researchers in the computer vision community, and has
led to the establishment of a currenty incomplete but
growing theory of feature invariance. Such efforts have
primarily considered reflected-light imagery — formed
by sensing visible wavelength energy. This investi-
gation has resulted in a number of distinct (yet re-

*This research was supported by the AFOSR contract
F49620-93-C-0063, the AFOSR grant LRIR-93WLO001, and the
National Science Foundation research initiation award IRI-
91109584.

lated) approaches that may be loosely grouped into
three categories: (1) Geometric Invariance (GI), (2)
Quasi-Invariance (QTI), and (3) Intensity-based Invari-
ance (IT).

Geometric invariants have been investigated since the
inception of the field of image analysis in the early
1960s (actually, such investigation can be traced back
to the onset of photogrammetry in the 19th century).
The main issue here is the investigation of features
that are invariant with respect to changes in view-
point. Geometric invariants come in two basic “fla-
vors” | algebraic and differential. Algebraic invariants
are based on the global configuration of features ex-
tracted from an object, and involve the notion of al-
gebraic shapes, e.g., shapes are analytically expressed
as 2D conics, and invariant relationships are identified
between conics belonging to an object. Differential
invariants are polynomial expressions involving the lo-
cal curvature properties of 2D and 3D curves and are
computed for each point on the curve. Thus differ-
ential invariants are actually parameter space “signa-
tures” (e.g., a locus of point in an abstract parameter
space) that are unique to the object, so that differ-
ences between two parameter space signatures define
different objects. A close relationship (an equivalence
in some cases) has been shown between some formu-
lations of differential invariants and algebraic invari-
ants [Forsyth et al., 1991]. There are several examples
of geometric (actually algebraic) invariants of planar
configurations under projective transformation, such
as the cross ratio using 4 collinear points, 5 coplanar
points with no three being collinear, a conic and two
non-tangent lines, and a pair of conics.

Quasi-Invariance (QI) can be thought of as a relax-
ation of the central notion of GI [Binford et al., 1989,
Zerroug and Nevatia, 1993]. A Quasi-Invariant is a
property of a geometric configuration that is almost in-



variant under a class of imaging transformations. For-
mally, a geometric configuration is a QI if the linear
term(s) in the Taylor series expansion of the configu-
ration with respect to the parameters of the imaging
transformation vanish. This has the effect of making
the QI measure nearly constant over a large region
of the viewing hemisphere, and rapidly diverging only
as the angle between the view direction and the sur-
face normal approaches large values. This behavior
lends itself to probabilistic modeling and the use of
reasoning schemes such as Bayesian evidence accrual.
A detailed study of the variation of “invariant” fea-
tures with viewpoint has been undertaken [Burns et
al., 1993].

Intensity-based Invariants (II’s) are functions of im-
age intensities that yield values which are invariant
to scene illumination and viewpoint. To date, some
investigation of II’s has been conducted for visible im-
agery, but practically none has been reported for non-
visible imagery. Examples of II’s in computer vision
include color features for object recognition [Klinker
et al., 1988, Healey, 1991, Healey and Slater, 1994]
and polarization cues for material identification [Wolf,
1990]. A more direct example of this approach com-
putes ratios of albedos of homogeneous image intensity
patches within objects in visible imagery [Nayar and
Bolle, 1993].

Non-visible modalities of sensing have been shown
to greatly increase the amount of information that
can be used for object recognition. A very popular
and increasingly affordable sensor modality is thermal
imaging - where non-visible radiation is sensed in the
long-wave infrared (LWIR) spectrum of 8um to 14pum.
The current generation of LWIR sensors produce im-
ages of contrast and resolution that compare favorably
with broadcast television quality visible light imagery.
However, the images are no longer functions of only
surface reflectance. As the wavelength of the sensor
transducer passband increases, emissive effects begin
to emerge as the dominant mode of electromagnetic
energy exitance from object surfaces. The (primarily)
emitted radiosity of LWIR energy has a strong depen-
dence on internal composition, properties, and state of
the object such as specific heat, density, volume, heat
generation rate of internal sources; etc. This depen-
dence may be exploited by specifying image-derived
invariants that vary only if these parameters of the
physical properties vary.

In this paper we describe the use of the principle of
conservation of energy at the surface of the imaged
object to specify a functional relationship between the
object’s thermophysical properties (e.g., thermal con-

ductivity, thermal capacitance, emissivity, etc.), scene
parameters (e.g., wind temperature, wind speed, so-
lar insolation), and the sensed LWIR image gray level.
We use this functional form to derive invariant fea-
tures that remain constant despite changes in scene
parameters/driving conditions. In this formulation the
internal thermophysical properties play a role that is
analogous to the role of parameters of the conics, lines
and/or points that are used for specifying geometric
invariants when analyzing visible wavelength imagery.
Thus, in addition to the currently available techniques
of formulating features that depend only on external
shape and surface reflectance discontinuities, the phe-
nomenology of LWIR image generation can be used
to establish new features that “uncover” the composi-
tion and thermal state of the object, and which do not
depend on surface reflectance characteristics.

The derivation of thermophysical invariants (TT’s)
from non-visible wavelength imagery, the evaluation of
the performance of these invariants, and their use in
object recognition systems poses several advantages.
The main advantage of this approach is the poten-
tial availability of a number of new (functionally in-
dependent) invariants that depend on internal compo-
sitional properties of the imaged objects. Note that
it 1s possible to evaluate the behavior of thermophys-
ical invariants using ground truth data consisting of
images of objects of known composition and inter-
nal state. This additional information can be used
to augment/complement the behavior of GI’s. One
way in which GI’s can be integrated with TI’s for ob-
ject recognition is as follows: (1) Parametric curves
and/or lines are extracted from an LWIR image. (2)
The curves are used to compute GI’s which are in turn
used to hypothesize object identity and pose, and (3)
TI’s are computed for this hypothesis and compared
to a stored model library for verification. Some details
of this approach are presented later.

The ideas presented in this paper are continua-
tions/extensions of previous and ongoing research in
thermophysical model-based interpretation of LWIR
imagery. A brief description of this thermophysical
approach is presented in section 2, followed by the for-
mulation of a method to derive themophysical invari-
ants in section 3. Preliminary experimental results of
applying this new approach to real imagery are pre-
sented in section 4, which is followed by a disussion of
the behavior of the new method, issues to be consid-
ered in using this method for object recognition, and
issues that remain to be explored.

2. A Thermophysical Approach to IR
Image Analysis



Figure 2: Equivalent thermal circuit of the imaged
object. Here, internal heat sources are assumed to
be non-existent. The conducted energy is used to
charge/discharge the lumped thermal capacitance of
the object.

ance theory is described in section 3.

At the surface of the imaged object (figure 1) energy
absorbed by the surface equals the energy lost to the

environment. Waps = Wlos.t o (1)
Energy absorbed by the surface is is given by
Waps = Wr coslr oy (2)

where, W7 is the incident solar irradiation on a hori-
zontal surface and is given by available empirical mod-
els (based on time, date and latitude of the scene) or
by measurement with a pyranometer, #; is the angle
between the direction of irradiation and the surface
normal, and «; is the surface absorptivity which is
related to the visual reflectance ps by oy = 1 — p;.
Note that it is reasonable to use the visual reflectance
to estimate the energy absorbed by the surface since
approximately 90% of the energy in solar irradiation
lies in the visible wavelengths [Incropera and DeWitt,
1981].

A simplified shape-from-shading approach was used to
compute cosfl; and a; from the visual image. The sur-
face temperature was estimated from the thermal im-
age based on an appropriate model of radiation energy
exchange between the surface and the infrared camera.

The energy lost by the surface to the environment was



given by
Wlost = ch + ch + Wrada (3)
where, W,., denotes the heat convected from the sur-
face to the air which has temperature Ty,,; and veloc-
ity V, Wiyaaq 1s the heat lost by the surface to the
environment via radiation and W.4 denotes the heat
conducted from the surface into the interior of the ob-
ject. The radiation heat loss is computed from:
Wyaa = €0 (TH=T2 ), (4)

amb
where, o denotes the Stefan-Boltzman constant, T
is the surface temperature of the imaged object, and

Tams 18 the ambient temperature.

The convected heat transfer is given by

ch = h(Ts - amb) (5)
where, h 1s the average convected heat transfer coef-
ficient for the imaged surface, which depends on the
wind speed, thermophysical properties of the air, and
surface geometry [Incropera and DeWitt, 1981].

Considering a unit area on the surface of the imaged
object, the equivalent thermal circuit for the surface
is shown in figure 2. Crp 18 the lumped thermal capac-
itance of the object and is given by
Cr=DVe

where, D is the density of the object, V' is the volume,
and ¢ is the specific heat. The resistances are given
by:

1 1
Rcv - A and Rrad — EO'(Tsz +Tazmb)(Ts +Tamb)
It is important to note that implicit in the above for-
mulation is that a low Biot number was assumed, viz.,
the surface was considered to be a thin plate.

2.1. Analyzing A Single Data Set

It is clear from figure 2 that the conduction heat flux
W.q depends on the lumped thermal capacitance Cp
of the object. A relatively high value for C7 implies
that the object is able to sink or source relatively
large amounts of heat. An estimate of W4, therefore,
provides us with a relative estimate of the thermal
capacitance of the object, albeit a very approximate
one. W.q4 is useful in estimating the object’s ability
to sink/source heat radiation, a feature shown to be
useful in discriminating between different classes of ob-
jects.

In order to minimize the feature’s dependence on dif-
ferences in absorbed heat flux, a normalized feature
was defined to be the ratio R = W.4/Ws. The val-
ues are lowest for vehicles, highest for vegetation and
in between for buildings and pavements. Classifica-
tion of objects using this property value is discussed
in [Nandhakumar and Aggarwal, 1988b].

2.2. Analyzing A Temporal Data Se-
quence

The availability of temporal sequences of registered
thermal and visual images makes possible a direct es-
timation of Cr and hence a more reliable estimate of
the imaged object’s relative ability to sink/source heat
radiation. Since

W.qs=Cr ddj;s (6)
a finite (backward) difference approximation to this
equation may be used for estimating Cr as
e M
(T(t2) ~ T2(0))
where, t; and t5 are the time instants at which the data
were acquired, Ty (41) and T;(#2) are the corresponding
surface temperatures, and W.4 1s the conducted heat
flux which is assumed to be constant during the time
interval.

Cp =Wy

2.3. Limitations of The Previous Ap-
proach

The above approach is powerful in that it makes
available features that are completely defined by in-
ternal object properties, and hence may be consid-
ered to be deterministic. Hence, feature values may
be compared with accurate ground truth values com-
puted from known physical properties of test ob-
jects — one of the major advantages of using physics-
based/phenomenological models as compared to sta-
tistical models.

There are several factors that limit the performance
of the above approach. These are listed below and a
method to minimize these limitations is addressed in
the next section.

Systemic Errors in Sensor Fusion.

The thermal and visual image pairs may not be per-
fectly registered. Also, segmentation errors typically
cause a large portion of an object to be included
with small portions of a different object in one region.
These errors give rise to meaningless values of the sur-
face energy estimates at/near the region boundaries.
However, stable estimates are available in the inte-
rior of each of the regions. Also, shape from shading
techniques perform poorly unless images are relatively
noise-free and have high resolution [Zhang et al., 1994].

These errors result in a significant number of inaccu-
rate estimates of the surface energy exchange compo-
nents. The histogram of values of the ratio R tends
to be heavy-tailed and skewed. A statistically robust
scheme for computing the thermophysical feature R
was proposed to minimize this drawback [Nandhaku-
mar, 1994]. However, the computational complexity



Figure 4: We need a collection of five point in 5D mea-
surement space to compute the affine transformation,
T;, between two scenes. Two different sets of 5 points
each can be used to define an absolute invariant pro-

vided det(T}) = det(7T%).

for such a technique is very high, and the following
drawbacks below were not adequately overcome.

Unknown Surface/Scene Parameters.

Direct application of the energy exchange model as
described above requires a prior: knowledge of several
surface and scene parameters such as emissivity, wind
speed, solar insolation, etc. Values for these were ei-
ther assumed, hypothesized, or empirically obtained.
It would be beneficial to formulate an approach where
knowledge of these parameters is not imperative.

Variation in R.

The value of the thermophysical feature, R, was found
to be only weakly invariant. While separation between
classes was preserved, the range of values of R for each
class was observed to vary with time of day and season
of year. Also, the feature R was able to only separate
very broad categories of objects, such as automobiles,
buildings, and vegetation - but lacked the specificity
to differentiate between different models of vehicles.

An improved formulation for establishing thermophys-
ical features is described in section 3, wherein the fea-
ture is constrained to be invariant to affine transfor-
mation of the driving (scene) conditions.

3. Formulation of Thermophysical
Affine Invariants (TPI’s)

An improved approach for computing invariant fea-
tures that depend on the internal, thermophysical
properties of the imaged object, and that are invari-
ant to driving (scene and surface) parameters is based
on a reformulation of the model outlined in section 2.
First, to account for reasonable values of Biot num-
bers, viz. for objects other than thin plates, the con-
ducted energy component W4 is decomposed into two
terms - Wy, which alters the stored, internal energy of
an elemental volume at the surface, and W., 4 which is
conducted to the interior of the object. Note that W,
is given by eqn (6), while W,,q = —k dT/dz, where
k is the thermal conductivity of the material, and =
is distance below the surface. Here, we assume that
lateral energy conduction is insignificant compared to
conduction along the direction normal to the surface.
Figure 3 shows the equivalent thermal circuit for this
extended model.

The energy balance equation, Wyps = Wygg + Wey +
Wy + Weng may be rewritten in the following linear
form:

alzy + a’xs + aPxs + atrvs + Pz = 0. (8)
Using the expressions for the various energy compo-

nents as presented in section 2 we can express each
term in the above expression as:

al = cosfy 1 = Wrag

at =—o (T} = T,,,;) L2 =¢

a® = _(Ts - Tamb) r3=nh (9)
at = Crp Ty = —dg;s

a® = kT, x5 =1— %

The term a®z5 denotes W, 4 expressed in a finite dif-
ference form.

Note that a calibrated LWIR image provides radio-
metric temperature. Hence ¢ and a® can be com-
puted from the LWIR image alone (and knowledge of
the ambient temperature), while a® and a* are known
when the identity and pose of the object 1s hypothe-
sized, and a® is computed using the image and the hy-
pothesis. The “driving conditions”, or unknown scene
parameters' that change from scene to scene are given
by the x;. For each pixel in the thermal image eqn (9)
defines a hyperplane in 5-D space.

1Here, we use the Einstein notation to denote the image-
based measurement vector as a contravariant tensor,a’, while
the changing scene conditions form a covariant tensor,z;. There-
fore, atz; = 0.



Figure 6: Type-B vehicle with points selected on the surface of different components with different material
properties and/or surface normals.



Consider two different LWIR images of a scene ob-
tained under different scene conditions and from differ-
ent viewpoints. Consider N points on the object that
(a) are visible in both views, and (b) have been selected
to lie on different components of the object which dif-
fer in material composition and/or surface normal di-
rection. Assume (for the nonce) that the object pose
for each view, and point correspondence between the
two views are available (or hypothesized). A point in
each view yields a contravariant tensor a’ as defined
by eqn (9). Let the collection of these tensors be de-
noted by aﬁc, k=1,2,..., N for the first scene/image
and bﬁc, k=1,2,..., N for the second scene. For the
k-th point we denote the measurement tensor as ay for
the first view, and as by for the second view, and the

driving conditions tensor as xX.

We assume that the scene/driving conditions, x¥, in
the two scenes are related by an affine transformation.
The justification of this assumption is discussed be-
low. We have found, empirically, that this assumption
holds when the points are selected using the method
discussed later in this paper. Since the x* are trans-
formed affinely, then it follows that the ay are also
transformed affinely. Note that an affine transforma-
tion from one scene to another is trivial to obtain if we
have only five points that generate five non-coplanar
tensors in our 5-D measurement space. Consider one
such subset of 5 of the N points, and denote them as
t,7,1,m, and n.

The determinant

aj @ @ af a

a} a? a? af az
d(ajajaiaman) = | a;  af @ a} q (10)

al, a2 a3 al

at al ad at

defines the volume of the oriented parallelopiped
formed by the pencil of the five contravariant tensors
aj, aj, a1, am, an. The above determinant is a relative
invariant to the affine transformation [Gurevich, 1964],
le.,
d(aiajalaman) = 6ijlmn X d(bibjblbmbn)

where 6;51mn is the determinant of the affine transfor-
mation, T;jimn, which relates the measurement ten-
sors, Le., ax = biTjjimn, k € {i,4,1,m,n}.

Consider another set of five points in which at least
one point is different from the previous set (see figure
4). Denote this second set as {p, ¢, 7, s,t}. Again, as-
sume that the measurement tensors for this collection
of points undergo an affine transformation from the
first scene to the second, and denote this transforma-
tion by Tpgrst-

d(apagarasag) = bpgrst X d(bpbgbybsby)

where bpgr5t = det(Tpgrse). Hence, if 8ijimn = bpgrsts
then we can define an absolute invariant as

d(a;ajajaman)

1= (11)

Note that the existence of affine transformations
Tijimn and Tpgrse is easy to ensure by selecting the
surface points appropriately (discussed in section 5).
The selection of two sets of five points such that
Oijimn = Opgrst holds can be attempted as a data-
driven training task as follows.

d(apagayasayg)

Calibrated LWIR imagery from different object classes
are obtained at different times of day and different sea-
sons of the year. N points are picked on an object —on
distinctive components that differ in material compo-
sition and/or surface normal. Consider the image from
time ¢, and the image from ¢,, u # v. The measure-
ments at ¢, along with the hypothesis of the identity
of the object form the tensors ag. Similarly, image in-
formation at time ¢, 1s used to form the measurement
tensors by.

All combinations of two sets of five points each,
{i,7,1,m,n} and {p,q,r s,t}, are examined. The
measurement matrices (a;aja1a@man), (bibjbibmbn),
(apaqarasag), and (bpbgbybsby) are constructed.
The transformations T;;imn and Tperss, if they exist,
and the their determinants &;;7mn, and ép4r5¢ are com-
puted. The two sets that best satisfy 6i;imn = Opgrst
for different choices of pairs of scenes/images, i.e. dif-
ferent choices of t, and t,, are selected. With N
points, the number of possible choices of the pair of
sets of points is given by

= ((N ﬁ)!&) ((Nﬁ)%‘_l)

For example, ng = 15, ng = 1,540, and ny; = 106, 491.

In order for the invariant feature to be useful for ob-
ject recognition the value of 7 must be different if the
measurement vector is obtained from a scene that does
not contained the hypothesized object and/or the hy-
pothesized pose is incorrect. Hence, the search for the
optimal sets of points conducted during training phase
should also take into consideration class separability,
in addition to intra-class variation.

The linear form, eqn (9), must be slightly modified for
interpreting LWIR imagery acquired at night. Since
solar insolation is nonexistent, W;s as defined above
is zero, and the energy balance model has only four
terms. Hence, the measurement tensor is four dimen-
sional, and we consider sets of four points in evaluat-
ing the absolute invariant. A separate training phase
is required, resulting in the specification of a different
choice of points for night-time use.



Time | Set A-1 | Set A-2
11 am 0.154 -10.9
12 n 0.152 -10.8
1 pm 0.153 -11.0
2 pm 0.154 -10.9
3 pm 0.154 -10.9

Table 1: Variation of feature values for two differ-
ent choices of points. A-1 consists of point sets
{1,3,10,6,7} and {3,4,10,6,7}. A-2 consists of point
sets {1,3,4,6,7} and {2,3,6,7,8}. The numbers cor-
respond to the labels in the image of the Type-A ve-
hicle.

Time | Set B-1 | Set B-2
11 am -1.5 0.4
12 n -1.6 0.7
1 pm -1.5 0.2
2 pm -1.6 0.4
3 pm -1.5 0.4

Table 2: Variation of feature values for two differ-
ent choices of points. B-1 consists of point sets
{1,2,3,6,8} and {1,2,5,6,8}. B-2 consists of point
sets {1,2,4,5, 7} and {2,3,5,6,7}. The numbers cor-
respond to the labels in the image of the Type-B ve-
hicle.

4. Experimental Results

The method of computing thermophysical affine in-
variants discussed above was applied to real LWIR
imagery acquired at different times of the day. Two
types of vehicles were imaged: Type-A (figure 5) and
Type-B (figure 6). Several points were selected (as
indicated in the figures) on the surfaces of different
materials and/or orientation. The measurement ten-
sor given by eqn (9) was computed for each point, for
each image/scene.

The method used to select optimal sets of points
{i,7,1,m,n} and {p,q,r 5,1} was similar to that de-
scribed in section 3 — however, instead of using the
equivalence of the determinants of the two affine trans-
formations as the selection criterion, we used the vari-
ance in the values of the feature computed for differ-
ent scenes (i.e., images obtained at different times of
day) containing the object. Many different pairs of
five-point-sets yielded features with low variance from
scene to scene. Table 1 shows values of the feature
for two different choices of sets of points for the Type-
A vehicle, and table 2 shows values for two different
choices of points for the Type-B vehicle.

As mentioned in section 3 one must consider inter-class
behavior as well as intra-class behavior. To investigate

Time | Hypothesis: Type-A | Hypothesis: Type-A
of Day | Data from: Type-B | Data from: Type-A
11 am .003 -.03
12 n .01 -.01
1 pm .01 -.02
2 pm .01 -.01
3 pm .001 -.01
Table 3: Inter-class variation vs. intra-class varia-

tion for set A-3 consisting of point sets {2,3,4,6,7}
and {3,4,10,7,8} for Type-A vehicle. Thermophsyi-
cal properties are chosen for a Type-A vehicle hypoth-
esis. The middle column shows feature values com-
puted when the measurement tensor is obtained from
a Type-B vehicle.

Time | Hypothesis: Type-B | Hypothesis: Type-B
of Day | Data from: Type-A | Data from: Type-B
11 am -.001 0.4

12 n -.01 0.7

1 pm -.03 0.2

2 pm -.002 0.4

3 pm .05 0.4

Table 4: Inter-class variation vs. intra-class variation
for point set B-2. Points and thermophsyical proper-
ties are chosen for a Type-B vehicle hypothesis. The
middle column shows feature values computed when
the measurement tensor is obtained from a Type-A
vehicle.

this we adopted the following procedure. Given an im-
age of a vehicle, (1) assume the pose of the vehicle is
known. (2) use the extremal forward and rear road-
wheels to establish a reference frame. The coordinates
of the selected points are expressed in terms of this
frame. Thus when a type-A vehicle is hypothesized
for an image actually obtained of a type-B vehicle, the
material properties of the type-A vehicle are used, but
image measurements are obtained from the image of
the type-B vehicle at locations given by transforming
the coordinates type-A object points to the type-B im-
age frame.

Table 3 shows inter-class and intra-class variation
when type-A vehicle 1s hypothesized, and for images
obtained at five different times in the day. Table 4
shows inter-class and intra-class variation when type-
B vehicle is hypothesized. Such investigation showed
that the set of points A-1, A-2, and B-1 produced al-
most identical values irrespective of the source of the
measurements. These sets have good (low) intra-class
variation but poor inter-class separation, and they do
not distinguish a type-A vehicle from a type-B vehicle.



Sets A-3 and B-2, however, can be seen to demonstrate
good inter-class separation and acceptable intra-class
variation.

5. Discussion

The approach described above is promising in that it
makes available features that are (1) invariant to scene
conditions, (2) able to separate different classes of ob-
jects, and (3) based on physics based models of the
many phenomena that affect LWIR image generation.

The specification of optimal sets of points for high
inter-class separation and low intra-class variation is a
crucial task in this approach. This is a complex search
problem, and it 1s not clear that a solution will always
exist for a collection of object classes. Note that dif-
ferent aspects of an object may be imaged — the set of
visible points differ for each aspect. The complexity of
the search task is compounded by attempting to en-
sure inter-class separation in the presence of erroneous
pose hypothesis.

Some criteria for the choice of point sets are obvious.
Points should not be chosen such that the measure-
ment matrix has less than full rank. This occurs,
for example, when the five points lie on surfaces with
identical surface normals and identical thermophysi-
cal properties. When the two sets of points have four
points in common, and when the remaining two points
are on different parts of the imaged object, but lie on
materials that are identical/similar, then these points
will form an invariant that has magnitude of one. Such
invariants are useful only if there exists a unique set,
or limited number of sets, of points that produces this
value. Other thermophysical criteria for point set se-
lection need to be investigated.

There remain many issues that are not well under-
stood and require further research. An important as-
sumption/observation that requires justification from
a thermophysical viewpoint is that the tensor of driv-
ing conditions (for the two sets of points used to com-
pute the invariant) undergoes an affine transformation
from scene to scene, and that the affine transforma-
tions for the two sets have identical determinants for
any two scenes.
model a wide range of changes in the driving condi-
tions, and hence is intuitively a good choice - a thermo-
physical interpretation of this assumption/observation
would be helpful in understanding the behavior of in-
variants for different choice of points on the object.
Another important issue is to choose a linear form
that is not homogeneous - by replacing the zero in
the right hand side of eqn (8) with terms from the left
hand side. This would reduce the dimensionality of

While an affine transformation can

the measurement vector, and depending on the choice
of terms — eliminate the requirements for hypothesis
of pose and hypothesis of specific thermophysical pa-
rameter values, but at the risk of impaired invariance
and separability.

The hypothesis of object pose and identity 1s best
achieved by employing geometrical invariance tech-
niques [Forsyth et al., 1991]. For example, conics may
be fit to wheels which manifest high contrast in LWIR
imagery, and their parameter values may be used to
compute GI’s. This may be employed to generate ob-
ject identity and pose that may be verified by the ther-
mophysical invariance scheme described above. Future
effort will be devoted to: the integration of the above
scheme with GI’s to produce a complete system, the
study of the nature of scene-to-scene transformation
of driving conditions and justification of the affineness
of this transformation, and a detailed exploration of
the performance of the scheme when applied to a sig-
nificant collection of objects, aspects, and scene con-
ditions.
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